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Abstract 

 

USING PHYSIOLOGICAL CONDITIONS TO ASSESS CURRENT AND FUTURE 

WOOD FROG (RANA SYLVATICA) HABITAT USE IN THE SUBARCTIC 

 

Thomas Patrick Hastings 

B.S., University of Maine 

M.S., Appalachian State University 

 

 

Thesis Committee Chairperson:  Jon M. Davenport 

 

 

 Arctic regions are already experiencing the disproportionate impacts of climate 

change due to rapid surface warming rates. Changes in environmental variables as a result of 

climate change can influence the habitat suitability of wildlife. Animals that are dependent on 

the environment to meet physiological requirements, such as terrestrial amphibians, are 

highly susceptible to the impacts of climate change. Rana sylvatica (wood frogs), for 

example, must use habitats that balance thermal and hydric physiological requirements. 

However, there is a lack of knowledge on amphibian physiological conditions in Arctic and 

Subarctic landscapes. I investigated how environmental conditions and habitat characteristics 

influence physiological conditions and habitat use of wood frogs near Churchill, Manitoba. I 

used lab validated plaster models to estimate water loss rates (ug * min-1 * cm-2) and body 

temperature (°C) at specific radio-tracked frog and random locations (microhabitat scale) and 

among different habitat types (macrohabitat scale) throughout the Subarctic. At the 

macrohabitat scale, water loss rates are greater in the tundra than in the boreal forest and 

ecotone habitats. At the microhabitat scale, wood frogs are 0.5% more likely to use any given 
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location for every 1 ug * min-1 * cm-2 decrease in water loss rates and are 329% more likely to 

use locations with surface moisture. In addition, frogs are more likely to frequent locations 

with increased cover from vegetation and decreased exposure to harmful environmental 

conditions, such as wind and sunlight exposure. I also found that physiological conditions 

predicted by measured environmental conditions can be used to explain up to 60% and 91% 

of the variation in measured water balance and body temperatures, respectively. My results 

indicate that maintaining water balance is important for frogs in Subarctic landscapes. 

However, maintaining physiological conditions may be particularly challenging for 

amphibians found in extreme environments that are vulnerable to future climate change. 

Rapidly increasing surface temperatures and resulting alterations (e.g. permafrost thaw and 

reduced wetland availability) make it unclear how wood frogs and other ectotherms will 

respond to shifting environmental conditions and habitat characteristics. Knowledge on the 

relationship between the environment and physiological conditions can help us make 

predictions about how these Arctic and Subarctic amphibians will respond to changes in 

habitat suitability.  
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Introduction 

 Climate change has altered temperature and precipitation patterns at a global scale. At 

the Earth’s surface, temperatures have been warming at an average rate of 0.12 °C per decade 

since 1951 (IPCC, 2014). The global mean surface temperature is predicted to rise another 

0.3 to 0.7 °C from 2016 to 2035. Although changes in the amount of precipitation are more 

difficult to predict, extreme events such as increased variability in temperatures, more 

frequent heavy rains, and droughts are more likely (IPCC, 2014; Post et al., 2009; 

Prudhomme et al., 2014; Walther et al., 2002).  

Arctic regions are especially susceptible to the impacts of climate change due to rapid 

surface warming (Post et al., 2009). Northern latitudes are already warming at twice the rate 

of lower latitudes in the Northern Hemisphere (Cohen et al., 2014), with Arctic surface air 

temperatures increasing 2-4 °C between 1963 and 2012 (Walsh, 2014). North America, West 

Siberia, and the Arctic Ocean are three regions within the Arctic that are contributing most to 

surface warming, especially during the fall and winter (Johannessen, Kuzmina, Bobylev, & 

Miles, 2016; Walsh, 2014). Furthermore, multiple processes contribute to the now well-

documented poleward warming known as Arctic amplification (Serreze & Francis, 2006). 

For example, as warming increases, snow and ice layers that reflect solar radiation continue 

to retreat, exposing greater areas of dark vegetation that absorb heat from the sun (Serreze & 

Barry, 2011). Similarly, an increased length of the ocean’s ice-free season and decreased 
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thickness of sea ice allows more time for solar radiation to be absorbed by open waters 

(Cohen et al., 2014). Increased surface and water temperatures contribute to snow and ice 

melt and thus a positive albedo feedback loop (Serreze & Barry, 2011). Many other processes 

also interact to drive Arctic amplification and continue to alter Arctic and Subarctic 

landscapes at rates faster than other global regions (Kapsch, Graversen, Tjernström, & 

Bintanja, 2016; Pithan & Mauritsen, 2014; Shupe & Intrieri, 2004).  

An important question remains regarding how climate change will affect animals and 

their habitats (Hickling, Roy, Hill, Fox, & Thomas, 2006). Environmental variables altered 

by climate change such as the composition of vegetation, wetland hydrology, and water 

availability can influence habitat selection by individuals at multiple spatial scales (Blaustein 

et al., 2010; Brooks, 2009; IPCC, 2014; Johnson, 1980; Post et al., 2009). In severe instances, 

habitat alteration and environmental variables (e.g. surface temperature and moisture) can be 

limiting factors that create boundaries for dispersal (Cunningham, Rissler, Buckley, & 

Urban, 2015).  

Species can tolerate stressful habitat alterations and changing climatic conditions by 

adapting to changes or shifting their range to remain within suitable habitat boundaries 

(Chen, Hill, Ohlemüller, Roy, & Thomas, 2011; Cunningham et al., 2015; Walther et al., 

2002). Indeed, species ranges are shifting towards higher latitudes and elevations to remain 

within suitable habitat and climates (Hickling et al., 2006; Walther et al., 2002). For example, 

during the 20th century, 63% of 35 non-migratory butterfly species shifted their range north 

by 35-240 km in response to European warming (Parmesan et al., 1999). However, failure to 

shift ranges when faced with warming conditions can lead to local reductions in reproductive 

output and body condition, as observed with Ursus maritimus (polar bear) in Baffin Bay 
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(Laidre et al., 2020). Due to the potential impacts of habitat alteration, there is an increasing 

urgency to study how wildlife will respond to climate change (Buckley, 2008).  

Species have differing physiological tolerances and therefore must select habitats 

with appropriate environmental conditions (Martin, 2001). Species distribution modeling can 

help predict environmental conditions and habitats that will be most suitable to sustain 

various species (Shabani, Kumar, & Ahmadi, 2016). As an example, four ground-nesting 

bird species shifted their microhabitat nest selection between two vegetational habitat types 

in response to shifting precipitation patterns (Martin, 2001). Microhabitat shifts by the birds 

altered temperature conditions and increased nest predation as a result of new species 

interactions (Martin, 2001). Additionally, mechanistic models predict how species-specific 

traits (e.g. energy and mass balance, survival, and surface activity time) are influenced by the 

relationship between specific microclimatic environmental conditions and physiological 

mechanisms (Buckley, 2008; Kearney, Phillips, Tracy, & Porter, 2008). The physiological 

conditions of an animal can be measured using physical models that simulate animal 

conditions under natural environments (Bartelt & Peterson, 2005). This process-based 

modeling approach predicts which habitats will be most suitable to sustain specific traits 

(Shabani et al., 2016). Incorporating species’ physiological tolerances and microclimatic 

conditions improves insight to habitat suitability, habitat selection, and impacts to wildlife in 

the predicted distributions (Kearney & Porter, 2009).  

 Ectotherms are especially susceptible to environmental variation and habitat 

alteration and must use habitats with particular moisture and microclimate conditions in order 

to sustain a positive water balance and optimal body temperature (Berven, 1982; Groff, 

Calhoun, & Loftin, 2017). For instance, terrestrial amphibians rely on environmental 



4 

moisture as their permeable skin allows evaporative water loss in the absence of external 

moisture (Adolph, 1932; Peterman & Semlitsch, 2014; Riddell, McPhail, Damm, & Sears, 

2018; Toledo & Jared, 1993; Tracy, Tixier, Le Nöene, & Christian, 2014). Water loss rates 

are also influenced by body temperature, and amphibians tend to select habitats that 

appropriately balance thermal and hydric physiological requirements (Seebacher & Alford, 

2002). Furthermore, when exposed to warmer temperatures during active and hibernation 

periods, animals like Bufo bufo (common toad) expend more energy as metabolic rates are 

greater for extended periods of time. Energy loss decreased size at sexual maturity and body 

condition and increased the mortality of female common toads (Reading, 2007). Impacts of 

the environment on terrestrial amphibians reinforces the link between body temperature, 

water balance and habitat selection (Bartelt, Klaver, & Porter, 2010; Seebacher & Alford, 

2002).  

For terrestrial amphibians to maintain a positive water balance, they must have 

rehydration rates that are greater than dehydration rates from evaporative water loss (Dabes, 

Bonfim, Napoli, & Klein, 2012; Navas, Antoniazzi, & Jared, 2004). Morphological 

adaptations, including specialized ventral and dorsal skin to increase water uptake rates, aids 

amphibians in enhancing their rehydration (Navas et al., 2004; Ogushi et al., 2010). Other 

behavioral adaptations, such as entering water conserving postures and selecting habitats 

with available moisture, help prevent greater evaporative water loss rates (Dabes et al., 2012; 

Navas et al., 2004). Rana sylvatica (wood frog) at southern latitudes, for example, migrate to 

ephemeral ravines to remain within suitable soil moisture levels (Rittenhouse & Semlitsch, 

2007), suggesting that specific microhabitat selection can decrease chances of mortality via 

desiccation (Peterman & Semlitsch, 2014; Rittenhouse, Harper, Rehard, & Semlitsch, 2008; 
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Seebacher & Alford, 2002). Furthermore, 11 species of anurans found in a coastal sand dune 

habitat of Brazil, had rehydration rates that were faster than dehydration rates, with Rhinella 

jimi (Jimi toad) having the fastest rehydration rate (Dabes et al., 2012). Thus, as long as 

water is readily available, amphibians can remain hydrated and avoid desiccation.  

 Maintaining physiological requirements in extreme environments may require both 

behavioral and physiological adaptations. Terrestrial amphibians have evolved a variety of 

adaptations that have allowed them to maintain physiological requirements and occupy 

extreme environments ranging from hot, dry deserts to the cold, dry Arctic (Navas, 

Antoniazzi, Carvalho, Suzuki, & Jared, 2007; Storey & Storey, 1988). For example, juvenile 

Rhinella granulosa (granular toad) can remain surface active while dispersing or foraging 

during the day under dry, high temperature conditions (soil temperatures up to 40 °C) due to 

a high critical maximum body temperature (44.2 °C) and selection for shade and increased 

humidity. In the same environment, adult granular toads avoid these same harsh conditions 

by remaining inactive during the day (Navas et al., 2007).  

Similar to amphibians in xeric environments, terrestrial amphibians in extreme 

Subarctic environments also use shelter and wetland characteristics to maintain favorable 

body conditions. In one of the only Subarctic habitat use studies conducted during the active 

period, wood frogs, my study species, were found primarily in tundra habitat and were more 

likely to use microhabitat locations with standing water, shrubs and sedge cover than random 

locations with less cover (Bishir, Hossack, Fishback, & Davenport, 2018). However, most 

active period research for this species has taken place in temperate regions, and less is known 

about wood frog activity in higher latitudes where habitat characteristics and conditions are 

notably different (see study area section in the methods below). Although there seems to be a 
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consistent pattern that amphibian habitat use in a terrestrial environment is influenced by 

thermal and hydric body conditions, such as with wood frogs, there is still little known about 

amphibian habitat use or how specific habitats are related to physiological requirements in 

Arctic/Subarctic regions (Churchill & Storey, 1993; Rittenhouse & Semlitsch, 2007).  

The lack of knowledge on amphibian physiological conditions in Arctic/Subarctic 

regions is important because Arctic amplification is already altering Subarctic landscapes 

used by wood frogs (Lantz, Marsh, & Kokelj, 2013; Mamet & Kershaw, 2012; Wolfe et al., 

2011). Longer ice free seasons have resulted in greater evaporative water loss rates and 

increased drainage from permafrost thaw has reduced hydroperiods for Subarctic wetlands 

(Wolfe et al., 2011). In addition, warming has facilitated the expansion of shrubs into tundra 

habitat (Lantz et al., 2013). During the summer, increased evapotranspiration and canopy 

cover from shrubs decreases soil moisture and cools ground temperatures, respectively 

(Myers-Smith et al., 2011). Decreasing moisture availability and a shift towards a drier 

landscape will reduce the amount of habitat suitable for wood frogs. Identifying important 

microclimatic conditions and the physiological responses of wood frogs will help identify 

factors driving the habitat use of this Subarctic ectotherm.  

The goal of my research was to investigate how environmental conditions and habitat 

characteristics influence the physiology and habitat use of wood frogs at the northern edge of 

their range. I used lab-validated plaster models to estimate water loss rates (ug * min-1 * cm-2 

body surface area) and body temperature (°C) of wood frogs at specific radio-tracked and 

random locations near Churchill, Manitoba. I hypothesized that estimated water loss rates 

and water balance of frogs would differ among three macrohabitat types found in the 

Subarctic (tundra, boreal forest, and tundra/forest ecotone) due to differences in habitat 
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associated environmental differences. I predicted that water loss rates would be greater in the 

tundra macrohabitat with less vegetational complexity due to warmer temperatures (air and 

ground) and greater wind speeds. Similarly, I hypothesized that water loss rates would be 

lower at specific frog locations than at random points due to their use of habitat 

characteristics that reduce exposure to harsh environmental conditions. In addition, I used 

empirically determined relationships between measured environmental conditions and the 

physiological status of the wood frogs to make predictions about their water balance and 

body temperatures at all studied locations. With the ability to predict the physiological 

conditions of these frogs, we can now monitor how future climatic changes will affect their 

habitat suitability at multiple scales. 

Materials and Methods  

Study area 

My study area was located in the Hudson Bay Lowlands of Subarctic Manitoba 

(58.7375° N, -93.8190° W, 17 m). This landscape is unique because about 25% of it is 

covered in shallow wetlands that remain filled year round due to a continuous layer of 

permafrost that prevents drainage (Macrae, Brown, Duguay, & Petrone, 2014). My study 

area is located close to the boreal treeline, allowing comparisons among multiple 

macrohabitat types (tundra, boreal forests, and boreal forest/tundra ecotone) located closely 

to each other (Wolfe et al., 2011; Fig. 1). Studying boreal forest and ecotone macrohabitats 

may also provide insight into future landscape conditions as Subarctic vegetation shifts past 

historic treelines in response to warming (Mamet, Brown, Andrew, Trant, & Laroque, 2019; 

Mamet & Kershaw, 2012). In addition, the small elevational change and coastal location of 

the Hudson Bay Lowlands exposes this study area to consistent onshore and offshore winds, 
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with warm, dry offshore winds causing greater evapotranspiration (Rouse, 1991). Last, 

summer temperatures near Churchill are mild with an average daily air temperature around 

12 °C in July (Brandson, 2011; Macrae et al., 2014).  

Study species 

The wood frog (Rana sylvatica; LeConte, 1825) is a widespread and locally abundant 

North American amphibian (Dodd, 2013). The geographic range of this species extends from 

the southern Appalachian Mountains to the northeastern United States, as well as throughout 

Canada and into Alaska. Its range also extends north to above the Arctic Circle (Dodd, 2013; 

Larson et al., 2014).  

Plaster models 

I created plaster models to simulate the evaporative water loss rates, water balance, 

and body temperatures of wood frogs (Peterman et al., 2013; Tracy et al., 2007; Fig. 2). 

Plaster models are a useful tool for estimating amphibian physiological conditions under 

various environmental conditions as they can be deployed in the field at specific locations 

(Riddell, Apanovitch, Odom, & Sears, 2017). In addition, like the permeable skin of 

terrestrial amphibians, plaster models lose water in the absence of moisture (Peterman et al., 

2013; Tracy et al., 2007). Plaster models are also advantageous because they do not shrink 

and alter water loss rates due to changes in surface area while being deployed in the field for 

extended periods of time (Tracy et al., 2007). While useful, physical models do differ from 

live animals in that they cannot simulate behavioral responses to changing weather 

conditions, and some do not have the same skin resistance to water loss as live animals 

(Riddell et al., 2017; Tracy et al., 2007).  
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To make the plaster models, rather than using a dead specimen, I made a mold of a 3-

D printed generic ranid frog with dental alginate (Jeltrate Plus, DENTSPLY Caulk, Milford, 

Delaware, USA; Riddell, Apanovitch, Odom, & Sears, 2017; Tracy et al., 2007). I created 

molds for three different frog sizes, measured as the snout-vent length (SVL), to represent the 

size range (44-54 mm SVL) of adult wood frogs in the Subarctic study area. However, water 

balance was not strongly influenced by the size range I evaluated at the macro- (-1.18 ± 0.99 

ug * min-1 * cm-2, n=478) and microhabitat scale (0.32 ± 0.71 ug * min-1 * cm-2, n=499), and 

therefore plaster model size class was not included in my statistical modeling. I filled each 

mold with Plaster of Paris to create 20 identical models for each size class (total of 60 

models). All models included a 1.7 cm indent to retain an iButton temperature logger (model 

DS1921G, Maxim Integrated, San Jose, California, USA) at the base (Hossack et al., 2009). 

Last, I mixed each model with an equal amount of brown paint (Beauti-Tone Paint, Ontario, 

Canada) to mimic the surface color and solar absorbance of live wood frogs.  

Prior to deploying the models, I used wind tunnel trials in a controlled lab space at the 

Churchill Northern Studies Centre to validate that plaster models can be used to estimate the 

thermal and hydric conditions of wood frogs (Peterman and Semlitsch, 2013; Tracy et al., 

2007; Fig. 3). To do this, models and live frogs were soaked in water for 1 hour prior to all 

trials and excess water was removed with paper towel. Adult wood frogs were paired with a 

plaster model of a similar SVL for 2-hour water loss trials. Indoor trials consisted of two 

wind tunnels under controlled air temperature (°C), relative humidity (%), and wind speed 

(meters per second) conditions. Inside the wind tunnels, the model and frog were placed in a 

wire cage with a glass bottom to ensure position of the subjects remain constant during the 

trial (Fig. 3). At the start and end of all trials, frogs and models were weighed to the nearest 
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hundredth of a gram using a portable electronic scale (Ohaus NV4000 Precision Balance, 

Hogentogler and Co. Inc., Columbia, MD, USA) and surface temperature (skin or plaster) 

was recorded using an infrared thermometer (FLUS IR-802, Shenzhen FLUS Technology 

Co. Ltd, Shenzhen, China). The change in weight of models and frogs was used to estimate 

evaporative water loss rates (Peterman et al., 2013; Seebacher & Alford, 2002; Tracy et al., 

2007).  

In addition to model validations trials, water loss trials were also conducted in the lab 

and field to determine how long evaporative water loss rates remained constant (Fig. 4). To 

accomplish this goal, models were weighed every 30 minutes for 6 hours in a controlled lab 

setting to determine when water loss rates were no longer constant. The same process was 

repeated with models deployed in tundra habitat during sunny and windy conditions to 

provide an estimate of water loss rates under a range of natural conditions (Fig. 4).  

Field sampling – model use 

During my data collection at both the macro- and microhabitat scale, two plaster 

models of the same size class were always deployed on the same ground cover type to ensure 

similarities in environmental conditions (Fig. 5). I also randomly determined which cardinal 

direction each pair of models would be deployed to reduce any effect of placement direction 

(M. Gifford, personal communication). One model was used to estimate evaporative water 

loss rates and one model estimated water balance of wood frogs. Studies have typically only 

used models to study evaporative water loss rates, and created a barrier between the model 

and the substrate surface to prevent any moisture absorbance (Peterman & Semlitsch, 2014; 

Tracy et al., 2007). However, I wanted to determine not only how evaporative water loss 

differs between locations, but also if frogs use microhabitats that support greater water 
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balance. To accomplish this, I placed one model in the field without any barrier to the 

substrate (water balance model; Fig. 2). Prior to deployment, I soaked each model in water 

for 1 hour to fully saturate the models (Peterman & Semlitsch, 2014).  

All models were deployed in the field for ≤ 2 hours to ensure constant water loss rates 

among all models (Fig. 4). To account for differences in deployment time, all water loss 

estimates were standardized as the rate of water loss (ug/minute) divided by the surface area 

(cm2) of each plaster model (Riddell & Sears, 2015). Surface area (cm2) was calculated for 

the three different model size classes using the Mesh 3D Print Toolbox add-on in program 

Blender 2.79.0. To determine the surface area of live frogs, I entered the SVL of frogs into a 

linear regression equation calculated from the relationship between plaster model SVL 

(independent variable) and plaster model surface area (dependent variable). The regression 

equation and R2 value that resulted from this analysis are as follows: 

y = 2.01x – 51.37,  R2 = 0.99, n = 3, SE = 0.76 

where y = surface area of wood frogs (cm2) and x = SVL (mm) of wood frogs. Last, plaster 

model surface and body temperature were measured each time a model was deployed and 

collected using an infrared thermometer and iButton.  

Field sampling  

To compare the evaporative water loss rates, water balance, and body temperature of 

models among three Subarctic macrohabitat types (boreal forest, tundra, and forest/tundra 

ecotone), models were deployed along transects at four replicate sites (Fig. 5). The four sites 

were haphazardly chosen to represent the range of habitat conditions within the study area. 

Site selection was also contingent upon the presence of adult wood frogs and proximity of 
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the macrohabitat types. Two 40-meter transects were randomly placed within each habitat 

type at all sites (total of six transects per site; Fig. 6). Along each transect, paired models 

were deployed at 10-meter intervals. At each site, three teams of researchers and citizen 

scientists deployed models along transects in the three habitat types simultaneously to 

prevent differences in weather conditions. Between 30 June and 5 July 2018, models were 

deployed along transects at each of the four sites in the morning (approx. 09:00-11:00) and 

afternoon (approx. 14:30-16:30) for 2 hours to gain additional data on hydric and thermal 

physiological conditions that may be experienced by wood frogs throughout the day. Site 

order was randomly generated during both sampling periods to prevent bias. Last, the same 

24 transects were resampled a second time during the summer between 25 July and 30 July 

2018.  

At a finer spatial scale, I compared hydric and thermal conditions at specific 

microhabitat locations selected by frogs near Churchill, Manitoba. In 2018, I captured and 

individually fit 33 adult frogs at four sites with a radio-transmitter belt (Bishir et al., 2018; 

Groff et al., 2015; Fig. 5; Appendix A). Each belt was made of stretch bead cord (Stretch 

Magic, Pepperell Braiding Company, Pepperell, Massachusetts, USA) and a 0.4 g radio 

transmitter (Blackburn Transmitters, Nacogdoches, Texas, USA). Adult frogs were tracked 

every three to four days using an R-1000 telemetry receiver (Communications Specialist Inc., 

Orange, California, USA) and a model RA-23K VHF antenna (Telonics, Mesa, Arizona, 

USA). Frogs were located to within 10 cm or until visually identified and coordinates for 

each new location were determined with a handheld GPS unit (Garmin Etrex 10, Olathe, KS, 

USA). Paired plaster models were placed 15 cm from the located frogs. However, if wood 
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frogs relocated immediately upon our arrival, models were deployed at the exact location the 

frog vacated.  

All new frog relocations were paired with a random location where plaster models 

were also set. Random locations were positioned at half the distance of the previous 

movement and at a randomly generated compass bearing between 0 and 360 degrees (Bishir 

et al., 2018; Groff et al., 2017). This allowed me to determine if wood frogs were using 

microhabitats that influence their physiological status. Paired random locations also allowed 

me to characterize available environmental and associated physiological conditions that fall 

within the movement distances of each frog. During the summer of 2019, models were 

deployed at known wood frog and random point locations (240 total) generated from frogs 

tracked by Bishir et al. (2018) in 2015 and 2016. Placing models at these locations increased 

my sample size of known wood frog microhabitat locations and associated random points. 

At all paired model locations (along transects, specific wood frog locations, and 

random locations) I collected environmental data to understand how each variable may 

influence the physiology of wood frogs. First, I measured relative humidity next to models 

with a portable meter. Ground temperature (°C) was recorded in three locations at the base of 

the models using an infrared thermometer. Air temperature was measured by deploying a 

shaded iButton attached to a post about 1 meter above the ground. One iButton was deployed 

at the center of each transect when comparing the conditions among the different 

macrohabitat types. For measuring conditions at specific wood frog locations, the iButton 

post was placed within the macrohabitat type of both the frog and random locations. If the 

frog and random locations fell within different macrohabitat types, then multiple iButton 

posts were positioned. Next, I used my air temperature measurements along with the 
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Clausius- Clapeyron equation and my relative humidity measurements to calculate saturation 

vapor pressure (es) and actual vapor pressure (ea), respectively (Riddell et al., 2017). Vapor 

pressure deficit (kPa) was calculated as the difference between ea and es. I determined wind 

speed (m/s) by holding an anemometer directly above the models. The greatest wind speed 

detected in a one-minute period was recorded. Microhabitat characteristics were estimated 

within a 1-meter radius plot surrounding all paired model locations. The ground cover types 

(soil, water, moss/lichen, sedge, shrub) were visually estimated to the nearest 5%. The sum 

of all ground cover type estimates did not need to equal 100% as several habitat 

characteristics could overlap within the plots. Finally, rainfall during a plaster model 

deployment, direct sunlight on plaster model surfaces, and the placement of plaster models 

on measurable surface moisture were recorded as binary variables (yes, no).   

Data analysis  

 Lab validation trials 

Linear regression analysis was used to validate that plaster models were sufficient for 

estimating the evaporative water loss rates and body temperature of live wood frogs. I 

calculated a regression equation using plaster model evaporative water loss rates as the 

predictor variable and live frog water loss rates as the dependent variable from the controlled, 

lab validation trials. The same analysis was repeated for the surface temperatures of plaster 

models and wood frogs as part of the validation process. 

Macrohabitat scale analysis 

I used linear mixed effects models (LMER, Package lme4, version 1.1-21) to estimate 

the effects of environmental conditions and habitat characteristics on the water balance and 
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body temperature of wood frogs at the macrohabitat scale. Coefficients in these models 

estimate the strength of a variable’s effect on frog water balance and body temperature. 

Likewise, estimates represent the change in the dependent variable for every unit increase in 

a predictor variable while holding all other variables constant. LMER models at the 

macrohabitat scale were important for estimating differences in water balance and body 

temperature among the three habitat types, as well as determining which environmental 

conditions and habitat characteristics altered those physiological conditions at a broader 

Subarctic landscape scale. Water balance and body temperature of the plaster models were 

included as the dependent variables in separate LMER models. Macrohabitat type, 

environmental conditions, and habitat characteristics were included in the models as fixed 

effects. I nested plaster model locations within transect study site as random effects to 

account for the repeated measure of specific locations and any additional variation added by 

the sites.  

First, all variables that were not recorded in at least 10% of the plaster model 

locations were removed from the variables list. An initial LMER model was performed with 

all fixed effect variables included. Backwards selection was applied to remove all non-

significant variables (p > 0.05) beginning with highly correlated variables (r ≥ 0.7) of least 

significance (greatest p-value). Final models presented include only significant predictor 

variables unless otherwise indicated by bold font.  

Microhabitat scale analysis 

I used conditional logistic regression (CLR, Package survival, version2.44-1.1) to 

identify predictors of habitat use by wood frogs at the microhabitat scale. This analysis also 

determined if water balance and body temperature are physiological conditions influencing 
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habitat use. The physiological status, environmental conditions, and habitat characteristics of 

the frogs were included as independent, predictor variables. A cluster ID function was used 

to account for repeated measures and lack of independence of locations used by a single frog. 

Therefore, each frog was assigned a unique ID to include in the CLR model. Backwards 

selection beginning with highly correlated variables was again applied to arrive at a final 

CLR model. Next, the odds of a frog using a particular location for every unit change in a 

predictor variable were derived from exponentiated coefficient estimates and calculated using 

the following equation:  

Odds = (Exp. coefficient – 1) * 100 

Physiological predictions 

I predicted the water balance and body temperature of wood frogs by incorporating 

the relationships between environmental and physiological conditions learned from my 

statistical and plaster models. The ability to make such predictions allows researchers to 

monitor the physiological status of frogs in the future as environmental conditions continue 

to change with rapid warming. Using the same mixed effects modeling approaches as above, 

four additional models were performed including only environmental conditions as fixed 

effects. Each model included a physiological condition (water loss or body temperature) as 

the dependent variable at the macro- and microhabitat scale (four models total). At the 

microhabitat scale, many plaster models did not lose water and therefore at those locations, 

my dataset included zero values for the dependent variable. To account for the high number 

of zero values and to best predict the water balance of these frogs, I used a generalized linear 

mixed effects model (GLMER, Package lme4, version 1.1-21) with a Gamma family 

distribution (link=log) and bobyqa optimizer (Bolker et al., 2009). Physiological conditions 
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were predicted for all known model locations at both the macro- and microhabitat scale using 

the intercepts and coefficient estimates output from all LMER and GLMER models.  

To determine how well the physiological conditions observed in the field (plaster 

model water balance and body temperature) can be predicted by measurable environmental 

conditions, I used linear regression analysis with observed physiological conditions as the 

dependent variable and predicted physiological conditions as the independent variable. I used 

nonlinear regression with a quadratic function to better fit my observed and predicted water 

balance values at the macrohabitat scale. Package lme4, version 1.1-21 was used to perform 

all LMER and GLMER models. All statistical analyses were completed in Program R, 

version 3.6.0 (R Core Team, 2019).  

Results 

Validation trials and macrohabitat scale 

I was able to use the plaster models to study the effects of the environment on the 

physiological status of wood frogs. I found from the validation trials that the plaster models 

explained ~67% and ~80% of the variation in Subarctic frog water loss rates (F1,29 = 57.74, p 

< 0.001; Fig 7.) and body temperature (F1,29 = 114.70, p < 0.001; Fig. 8), respectively. At the 

macrohabitat scale, habitat type, environmental conditions, and habitat characteristics all 

influenced the water balance of wood frogs (Table 1). More specifically, water loss rates in 

the tundra were 90.11 ug * min-1 * cm-2 greater than in the ecotone habitat, when holding all 

other variables constant (Table 1). Water loss rates in the forest were 21.33 ug * min-1 * cm-2 

lower than water loss rates in the ecotone, although this water loss rate should be interpreted 

with caution when considering the standard error of the estimate (Table 1). Water loss rates 
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decrease for every 1% increase in habitat cover characteristics, with water loss decreasing the 

most with increased soil cover (2.80 ug * min-1 * cm-2 ) and the least with increased shrub 

cover (0.8 ug * min-1 * cm-2). In contrast, water loss rates tended to increase with exposure to 

environmental conditions at the macrohabitat scale. For every 1 m/s increase in wind speed, 1 

°C increase in ground temperature, and exposure to direct sunlight rather than shade, water 

loss rates increased (Table 1). However, for every 1% increase in relative humidity, water 

loss rates decreased by 2.15 ug * min-1 * cm-2. While habitat type and habitat characteristics 

influenced water balance, only the same four environmental conditions mentioned above had 

an effect on body temperature at the macrohabitat scale (Table 2). In addition, environmental 

conditions had the same effect on body temperature as they did on water balance with the 

exception that for every 1 m/s increase in wind speed, body temperature decreased by 0.63 

°C.  

Microhabitat scale 

Water loss rates and surface moisture availability are important predictors of 

microhabitat use by wood frogs within the Subarctic landscape (Table 3). Frogs were 0.5% 

less likely to use any specific location for every unit increase in water loss rate. Increased 

sedge and shrub cover increased the odds of a frog using a specific location while frogs were 

less likely to use locations with increased bare soil coverage. Importantly, frogs were 329% 

more likely to use any locations where saturated ground or standing water were available for  
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the frog to position itself in direct contact with. In addition, frogs were less likely to use 

specific locations with increased exposure to sunlight or greater wind speeds.  

Macro- and microhabitat comparison 

At the macrohabitat scale, relative humidity, wind speed, ground temperature, and 

sun exposure all altered body temperature and water balance (Table 2, 4). However, at the 

microhabitat scale, exposure to direct sunlight did not influence water balance or body 

temperature. Furthermore, water loss rates decreased and body temperature increased when 

surface moisture was available (Table 5, 6). Rainfall also decreased water loss rates (Table 

5). Last, body temperature was not influenced by relative humidity at the microhabitat scale 

but did increase as vapor pressure deficit increased (Table 6). All remaining relationships 

between environmental and physiological conditions remained consistent between the macro- 

and microhabitat scale.  

Physiological predictions 

Using the environmental conditions determined to influence physiology from the 

LMER models (Table 2, 4), predicted physiological conditions were able to explain 82% and 

70% of the variation in observed body temperature (Fig. 9) and water balance (Fig. 10) at the 

macrohabitat scale. However, it is worth noting that LMER models overestimated body 

temperature below around 10 °C, and therefore caution should be used if trying to predict 

body temperatures below that limit (Fig. 9). Similarly, using important environmental 

conditions from the microhabitat scale (Table 5, 6) predicted physiological conditions  
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calculated from the results of the LMER and GLMER model were able to explain 60% and 

91% of the variation in observed water balance (Fig. 11) and body temperature (Fig. 12).  

Discussion  

Having the ability to predict the physiological conditions of terrestrial amphibians, 

like wood frogs, will be particularly important in rapidly warming landscapes where habitat 

use is threatened by shifting habitat characteristics and environmental conditions. In the 

Hudson Bay Lowlands near Churchill, Manitoba, I tracked the habitat use of wood frogs and 

estimated their physiological status with the use of lab validated plaster models. I also used 

environmental conditions to predict the water balance and body temperature of frogs at the 

macro- and microhabitat scales. Physiological conditions of wood frogs, including water 

balance and body temperature, are impacted by habitat type, environmental conditions, and 

habitat characteristics. At the macrohabitat scale, tundra habitat seems to be the least optimal 

for frogs given that water loss rates are greater there than in the forest or ecotone (Table 1). 

Water loss at the macrohabitat scale is driven by environmental conditions and habitat 

characteristics, while body temperature is influenced only by environmental conditions such 

as sun exposure, wind speed, and ground temperature (Table 2). At the microhabitat scale, 

habitat use by wood frogs is driven by water loss and surface moisture availability and is not 

influenced by differences in body or environmental temperature (Table 3). Such findings 

suggest that during the active period, water balance and the environmental conditions and 

habitat characteristics that influence the hydric condition of wood frogs, may be more 

important than body temperature in Subarctic landscapes. Regardless, we have the ability to 

predict both the water loss rates and body temperature of Subarctic frogs in the future by 

incorporating environmental conditions.  
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 Macrohabitat diversity is important for some ectotherms, like wood frogs and 

Ambystoma jeffersonianum (Jefferson salamanders), that must complete complex annual life 

history requirements that often involve aquatic and terrestrial stages (Baldwin, Calhoun, & 

deMaynadier, 2006; Berven, 1990; Faccio, 2003). Yet, while wood frogs in Churchill, 

Manitoba are exposed to environmentally and structurally distinct macrohabitat types during 

their active period, they are primarily observed in shallow wetlands or other locations 

supporting standing water within the tundra macrohabitat type only (Bishir et al., 2018). 

Targeted use of wetland tundra habitat can be explained by the relationship between 

physiological conditions and habitat associated environmental conditions. For example, 

increased desiccation risk in tundra habitat outside of wetlands is likely driven by reduced 

vegetational complexity and exposure to greater wind speeds (Köhler et al., 2011). To 

increase water balance in Missouri, wood frogs moved to and congregated at ephemeral 

ravine macrohabitats (Rittenhouse & Semlitsch, 2007), which are wetter, more shaded, and 

have slower wind speeds than habits farther upslope. While wood frogs could likely maintain 

water balance in boreal forest or ecotone wetlands, additional, unmeasured factors may help 

explain frog presence in tundra habitats. For example, to consume enough food to sustain 

energy requirements during hibernation, prey preference by wood frogs and differences in 

invertebrate communities among habitat types may influence macrohabitat use 

(Cogălniceanu, Rusti, Plăiaşu, & Palmer, 2018; Costanzo et al., 2015). Although studying 

macrohabitats can provide useful information about broader landscape habitat suitability, 

evaluation of microhabitat is also crucial to better understand habitat use patterns. 

Wood frogs use tundra habitat (Bishir et al., 2018) because of the unique combination 

of environmental conditions and habitat characteristics that result in a positive water balance. 
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Results similar to that of Bishir et al. (2018) suggest that tundra microhabitats provide 

adequate surface moisture to support a positive water balance. The vegetational complexity 

contributed by the sedges and shrubs increases cover and protects the frogs from excess sun 

and wind. Use of locations with greater relatively humidity also benefits water balance by 

decreasing the vapor pressure deficit surrounding an animal (Riddell et al., 2017). The choice 

of habitat and the resulting physiological condition of wood frogs is similar to that 

influencing terrestrial amphibians at lower latitudes. For example, the water loss rates of 

western slimy salamanders (Plethodon albagula) were increased by exposure to solar 

radiation, and in this study, I found that wood frogs were 57% less likely to use locations 

with exposure to direct sunlight (Peterman & Semlitsch, 2014). Yet, I did not find that 

exposure to direct sunlight under sunny conditions was an environmental condition 

influencing the water balance of the wood frogs. It is possible that the adequate surface 

moisture available in this landscape allowed wood frogs to maintain a positive water balance 

when exposed to direct sunlight. However, similar to the negative effects of wind exposure 

reported in other amphibian studies, I found that for every 1 m/s increase in wind speed that 

wood frogs were 59% less likely to use any given location as water loss rates increased by 

0.42 ug * min-1 * cm-2 (Muller, Cade, & Schwarzkopf, 2018). The interactions among several 

environmental conditions, as well as their influence on physiological conditions, may help 

explain why frogs in the Subarctic avoided more exposed microhabitat locations (Stevenson, 

1985). Thus, wood frogs use of locations with increased surface moisture suggests that 

maintaining water balance may be a more limiting physiological condition than remaining 

within a potentially more flexible body temperature range in this Subarctic landscape.  
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Although I found that environmental conditions influence body temperature of wood 

frogs at both the micro- and macrohabitat scale, the lack of an effect by body temperature or 

environmental temperature on habitat use could be attributed to spatial thermal heterogeneity 

and sufficient water availability. For instance, it may be possible that the optimal body 

temperature range of frogs in the Subarctic can be achieved in many locations due to 

sufficient spatial thermal heterogeneity driven by vegetation complexity (Sartorius, do 

Amaral, Durtsche, Deen, & Lutterschmidt, 2002). Thus, body temperature may not be a 

factor influencing habitat use in the Subarctic. Conversely, amphibians found in desert 

landscapes are often nocturnal, fossorial, or adapted to acclimate to seasonal temperature 

shifts to tolerate extreme temperature conditions that threaten animals and their thermal 

maxima (Griffis-Kyle, 2016; Sanabria, Quiroga, & Martino, 2012).  

The unique amount of wetland coverage in this Subarctic landscape may also help 

explain why body or environmental temperature did not strongly influence microhabitat use 

by these wood frogs. Given they were much more likely to be found where measurable 

surface moisture was available, it is likely that as long as some portion of their body is in 

contact with liquid water, they are able to maintain a positive water balance. If wood frogs 

can remain within their optimal body temperature range when using microhabitats that 

benefit water balance, then the ability to maintain body temperature may not need to 

influence habitat use. Rana temporaria (common frog) in Poland, for example, typically used 

moist, vegetated locations that allowed body temperature to remain constant throughout the 

day (Köhler et al., 2011). Although temperature conditions were not influencing habitat use 

in our study, thermal physiological requirements must still be maintained by ectotherms to 

persist in terrestrial environments (Peterman & Semlitsch, 2014). 
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For wood frogs, managing body temperature during hibernation is influenced by 

habitat characteristics, and the ability to remain within thermal tolerances will be challenged 

throughout their geographic range as climate change continues (Groff, Calhoun, & Loftin, 

2016). Although synthesis of cryoprotectants is crucial to overwintering success in extreme 

winter conditions, habitat selection for certain features (e.g. deeper snowpack) is also 

important for controlling body temperature minima and seasonal fluctuations (Groff, 

Calhoun, & Loftin, 2016; Larson et al., 2014). For example, the minimum hibernacula 

temperature experienced by wood frogs in northern, interior Alaska is approximately -18.1 

°C, when air temperatures were as low as -36.8 °C (Larson et al., 2014). Thus, a snowpack 

acts as an insulating layer that buffers these frogs from extremely low temperatures. 

However, warmer weather and increased winter rainfall could expose wood frogs to adverse 

weather conditions during hibernation, which could force these frogs to experience 

deleterious physiological shifts due to greater temperature oscillations (Groff et al., 2016). 

Amphibians under these conditions are also at risk of expending more energy by having to 

synthesize additional cryoprotectants if the number of freeze thaw cycles increases (Harper & 

Semlitsch, 2007; Larson & Barnes, 2016; O’Connor & Rittenhouse, 2016). So, while the 

body temperatures of wood frogs may not influence Subarctic habitat use during their active 

period, it could become a critical limiting factor in the future should hibernacula 

temperatures become more erratic due to future climate warming. Research could help fill in 

gaps about future hibernacula habitat suitability, which is an important portion of the entire 

life cycle of these frogs. 

Maintaining water balance may also be particularly challenging for amphibians found 

in extreme environments that are more vulnerable to future climate change (Blaustein et al., 
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2010; Griffis-Kyle, 2016). Rapidly increasing surface temperatures and resulting habitat 

changes (e.g. permafrost thaw and vegetation encroachment into tundra habitat) could reduce 

wetland availability, as well as shorten the duration of the hydroperiod where standing water 

is freely available to the frogs (Johannessen et al., 2016; Lantz et al., 2013; Post et al., 2009; 

Walsh, 2014; Wolfe et al., 2011). Indeed, at a southern Arctic region of Nunavut, Canada, 

61% of all wetlands <0.1 ha in size, along with some larger water bodies, have been 

decreasing in size (Carroll & Loboda, 2017). Wetland loss trends will make it more difficult 

for adult frogs to maintain a positive water balance and could reduce connectivity between 

breeding locations for frogs throughout the landscape, thereby affecting gene flow, genetic 

diversity, and survival of isolated populations (Furman, Scheffers, Taylor, Davis, & 

Paszkowski, 2016). Small populations have a greater probability of doing a random walk to 

extinction than larger ones, and fragmentation of habitat and subsequent isolation of frog 

populations into smaller groups could hasten this outcome (Allentoft & O’Brien, 2010; 

Furman et al., 2016). A reduction in amphibian dispersal and gene flow among populations 

due to habitat loss can reduce the ability of a species to tolerate environmental variation such 

as that caused by climate change (Cushman, 2006). Therefore, frogs in the Subarctic are 

likely to become more threatened as warming continues to alter wetland availability.   

 Globally, amphibians are susceptible to the impacts of climate change, with increased 

pressure from additional interacting factors that lead to declines (Hof, Araújo, Jetz, & 

Rahbek, 2011). As climate change continues, up to 54% of frog species and 56% of 

salamander species are predicted to lose habitat with suitable climate conditions by the year 

2080 (Hof et al., 2011). Amphibian declines can be further influenced by interactions with 

other major threats including disease, land use change, and invasive species interactions (Hof 



26 

et al., 2011). Furthermore, species interactions can be altered by climate change as a result of 

range shifts or changes in the phenology of multiple species seasonal activities (Walther et 

al., 2002; Yang & Rudolf, 2010). For example, wood frogs and some Subarctic ground 

nesting bird species, are threatened by the range expansion of Chen caerulescens 

caerulescens (lesser snow goose), as these geese uproot and destroy important vegetational 

coverage used by wood frogs and other animals (Bishir et al., 2018; Peterson, Rockwell, 

Witte, & Koons, 2013; Davenport, personal communication). In addition, with smaller 

Subarctic wetlands shrinking, amphibian density within and surrounding the remaining 

wetlands may increase, and maintaining physiological conditions may become more difficult 

with increased inter- and intraspecific competition for suitable habitat and food (Carroll & 

Loboda, 2017; Harper & Semlitsch, 2007). However, there is still limited knowledge about 

how additional threats, including diseases, land use change, and altered species interactions, 

will impact amphibians in Subarctic landscapes. Future studies can help disentangle the 

influence that global threats have on amphibians in extreme, rapidly changing environments.   

My study focused on a widespread amphibian species in a rapidly warming and 

understudied Subarctic environment. My data provide important insights into the conditions 

that are affecting wood frog habitat use at the macro- and microhabitat scales, as well as 

information that enables accurate predictions about current and future physiological 

conditions of frogs in this study area. With the use of physical models, environmental 

conditions, and habitat characteristics, predictions of terrestrial amphibian physiological 

conditions can be made. Our knowledge of physiological conditions can be used to enhance 

mechanistic modeling approaches that do not rely on current species distributions or 

assumptions that animals will continue to respond uniformly to different climate conditions 
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in the future (Araujo & Peterson, 2012; Hijmans & Graham, 2006). It is unclear how wood 

frogs and other ectotherms will respond to shifting environmental conditions and habitat 

characteristics in the future; however, with predictive mechanistic models we can begin to 

answer these questions. Such methodologies can be applied in all locations where climatic 

and habitat cover spatial data is available to predict habitat suitability across changing 

environmental gradients.  
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Figures and Tables 

 

Figure 1. Located in the Hudson Bay Lowlands, this picture shows the transition from boreal 

forest habitat with dense tree coverage (far left) to tundra habitat dominated by moss and 

lichen (bottom right) at a local site scale. Boreal forest patches comprise of Picea glauca 

(white spruce) and Picea mariana (black spruce). The ecotone habitat, or transition zone 

between the forest and tundra habitat, is defined by intermediate densities of Krumholtz or 

skirted flag trees. One of my four transect sites includes the transitional habitat on the 

opposite side of the forest patch seen here near Churchill, Manitoba. (Photo: Thomas 

Hastings)  
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Figure 2. Plaster models used to estimate the evaporative water loss rates, water balances, 

and body temperatures of wood frogs in the Subarctic landscape near Churchill, Manitoba, 

Canada. (Photo: Thomas Hastings) 
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Figure 3. Wind tunnel validation trials conducted on 30 adult wood frogs and plaster models 

from 12 June to 4 August 2019 in Churchill, Manitoba, Canada.  
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Figure 4. Outdoor water loss trials were conducted to determine how long evaporative water 

loss rates remain constant. Plaster models of three different size classes (distinguished by 

different colors) were deployed in tundra habitat with full sun, exposure to wind, and 

relatively humidity conditions around 31%. Models were weighed every 30 minutes and each 

line represents the cumulative weight loss of a plaster model over a 4-hour time period. Trials 

were conducted near Churchill, Manitoba on 10 June 2018.  
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Figure 5. Red stars indicate the location of the four sites within my study area (Churchill, 

Manitoba, Canada) where models were deployed along transects in each of the three 

macrohabitat types from June to August 2018. Blue stars indicate sites where paired plaster 

models were deployed at specific adult frog and paired random locations from July to August 

2018. Yellow stars indicate where plaster models were deployed in 2019 at known adult frog 

and paired random locations from 2015 and 2016. 
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Figure 6. To compare the water balance and body temperature of wood frogs among three 

different Subarctic macrohabitat types, two transects were deployed in each habitat type 

(boreal forest patch on the left, ecotone in the middle with intermediate density of trees, and 

tundra on the right) with five pairs of models (top left) evenly spaced along each transect. 

Models were deployed along transects at my CNSC site near Churchill, Manitoba on 30 June 

and 25 July 2018. 
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Figure 7. Linear regression with 67% of the variation in wood frog’s water loss rates 

explained by model water loss rates (F1,29 = 57.74, p < 0.001, n = 30). Water loss data was 

collected from paired wood frogs and plaster models (n=30) during controlled wind tunnel 

trials conducted from 12 June to 4 August 2019 in Churchill, Manitoba.  
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Figure 8. Linear regression with 80% of the variation in wood frog’s body surface 

temperature explained by plaster model surface temperature (F1,29 = 114.70, p < 0.001, n = 

30). Controlled wind tunnel trials were conducted from 12 June to 4 August 2019 in 

Churchill, Manitoba.   
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Figure 9. Linear regression with 82% of the variation in the observed body temperature of 

wood frogs explained by predicted body temperature when using environmental variables at 

the macrohabitat scale (n = 478).  
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Figure 10. Quadratic regression with 70% of the variation in observed water balance of 

wood frogs explained by predicted water balance when using environmental variables at the 

macrohabitat scale (n = 478).  
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Figure 11. Linear regression with 60% of the variation in observed water balance of wood 

frogs explained by predicted water balance when using environmental variables at the 

microhabitat scale (n = 499).  
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Figure 12. Linear regression with 91% of the variation in the observed body temperature of 

wood frogs explained by predicted body temperature when using environmental variables at 

the microhabitat scale (n = 498).  
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Table 1. Habitat types, environmental conditions, and habitat characteristics influencing the 

water balance of wood frogs at the macrohabitat scale. Water balance models were deployed 

at four sites near Churchill, Manitoba between 30 June and 30 July 2018. Non-important 

predictors, as indicated by 95% CI, are presented in bold font. 

   95% CI 

Fixed Effects  Estimate Standard error Upper Lower 

Intercept 

Habitat: Forest 

182.33 

-21.33 

46.88 

13.94 

92.84 

-47.86 

270.84 

5.64 

Habitat: Tundra 90.11 11.89 67.22 112.87 

Direct sunlight 

Soil (%) 

66.66 

-2.80 

13.42 

1.03 

41.28 

-4.75 

 95.98 

-0.78 

Moss and lichen (%) -1.01 0.32 -1.62 -0.37 

Sedge (%) -2.56 0.64 -3.78 -1.34 

Shrub (%) -0.80 0.37 -1.51 -0.07 

Humidity (%) -2.15 0.44 -3.02 -1.31 

Wind (m/s) 19.34 5.80 7.94     30.64 

Ground temp. (°C) 9.32 0.79 7.73     10.82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

Table 2. Environmental conditions influencing the body temperature of wood frogs at the 

macrohabitat scale. These environmental conditions were also used to predict the body 

temperature of wood frogs at the macrohabitat scale. Water balance models were deployed at 

four sites throughout Churchill, Manitoba between 30 June and 30 July 2018. 

   95% CI 

Fixed Effects  Estimate Standard error Upper Lower 

Intercept 

Humidity (%) 

11.36 

-0.09 

1.04 

0.01 

 9.37 

-0.11 

13.36 

 -0.07 

Wind (m/s) -0.63 0.13 -0.87  -0.37 

Ground temp. (°C)   

Direct sunlight  

0.52 

1.22 

0.02 

0.35 

0.48 

0.51 

  0.57 

  1.88 
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Table 3. Environmental conditions, habitat characteristics, and physiological conditions that 

influence the odds of wood frogs using a specific microhabitat location. Habitat use of frogs 

was evaluated from 23 July to 25 August in 2018 and 25 June to 13 July 2019 in Churchill, 

Manitoba. Non-important predictors, as indicated by P-values > 0.05, are presented in bold 

font. 

Predictor variables Coefficient Exp. 

coefficient 

Odds (%) Standard 

error 

P-value 

Water loss 

Wind (m/s) 

Direct sunlight 

Surface moisture 

Sedge (%) 

Shrub (%) 

Soil (%) 

Body temp. (°C) 

Air temp. (°C) 

Ground temp. (°C) 

-0.004 

-0.896 

-0.837 

1.455 

0.030 

0.033 

-0.028 

0.041 

-0.103 

0.001 

0.995 

0.408 

0.433 

4.285 

1.031 

1.034 

0.972 

1.042 

0.902 

1.001 

   0.5 

  59.2 

  56.7 

328.5 

   3.1 

   3.4 

   2.8 

   4.2 

   9.8 

   0.1 

0.007 

0.277 

0.384 

0.369 

0.007 

0.007 

0.019 

0.053 

0.107 

0.050 

0.001 

0.001 

0.014 

0.001 

0.001 

0.001 

0.005 

0.283 

0.430 

0.988 
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Table 4. Environmental conditions used to predict the water balance of wood frogs at four 

macrohabitat sites near Churchill, Manitoba between 30 June and 30 July 2018. 

   95% CI 

Fixed Effects  Estimate Standard error Upper Lower 

Intercept 

Direct sunlight 

Wind (m/s) 

Ground temp. (°C) 

Humidity (%) 

111.82 

  82.81 

  43.34 

    8.53 

  -2.82 

31.53 

13.39 

  5.22 

  0.80 

  0.45 

 51.62 

 56.98 

 30.83 

   6.90 

    -3.69 

172.31 

113.59 

  54.73 

  10.05 

  -1.94 
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Table 5. Environmental conditions used to predict the water balance of wood frogs at 

microhabitat sites from 23 July to 25 August in 2018 and 25 June to 13 July 2019 in 

Churchill, Manitoba.  

                   95% CI 

Fixed Effects  Estimate Standard error Upper Lower 

Intercept 

Humidity (%) 

Wind (m/s) 

Ground temp. (°C) 

Rain 

Surface moisture 

  3.13 

 -0.02 

  0.42 

   0.11 

 -0.99 

  -2.33 

0.45 

0.01 

0.13 

0.02 

0.26 

0.18 

 2.23 

-0.03 

 0.16 

 0.07 

-1.52 

-2.69  

 4.03 

-0.01 

 0.68 

 0.14 

-0.46 

-1.98 
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Table 6. Environmental conditions used to predict the body temperature of wood frogs at 

microhabitat sites from 23 July to 25 August in 2018 and 25 June to 13 July 2019 in 

Churchill, Manitoba. 

   95% CI 

Fixed Effects  Estimate Standard error Upper Lower 

Intercept 

Vapor pressure deficit (kPa) 

Wind (m/s) 

Ground temp. (°C) 

Surface moisture 

 2.48 

 0.58 

-0.52 

 0.82 

 0.43 

0.28 

0.12 

0.12 

0.02 

0.17 

 1.94 

 0.34 

-0.72 

 0.79 

 0.11 

 2.97 

 0.78 

-0.26 

 0.86 

 0.75 
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Appendix A 

Adult wood frogs radio-tracked from July 20, 2018 to September 11, 2018 for plaster model 

deployment at specific microhabitats. All frogs were measured from snout to vent (SVL).  

Frog 

ID 

Sex Mass 

(g) 

SVL 

(mm) 

Site Dates Tracked Number of 

Locations 

Total Days 

Tracked 

1 F 6.51 36.63 Ramsey Road 7/20/18-7/23/18 2 4 

2 M 8.02 38.32 Ramsey Road 7/20/18-8/10/18 6 22 

3 M 10.03 42.88 Twin Lakes 7/20/18-8/5/18 5 17 

4 F 7.55 37.27 Ramsey Road 7/21/18-8/14/18 7 25 

5 M 6.92 33.30 Ramsey Road 7/21/18-7/27/18 3 7 

6 M 8.56 38.98 Ramsey Road 7/21/18-7/27/18 3 7 

7 M 8.68 37.79 Twin Lakes 7/21/18-8/5/18 5 16 

8 M 9.37 38.98 Twin Lakes 7/21/18-7/31/18 4 11 

9 M 10.97 40.97 Twin Lakes 7/21/18-8/5/18 5 16 

10 - 6.67 38.10 Lindy 7/22/18-8/5/18 6 15 

11 M 8.40 35.00 Lindy 7/22/18-7/24/18 2 3 

12 F 9.84 36.88 Lindy 7/22/18-8/5/18 5 15 

13 M 12.3 43.25 Lindy 7/22/18-9/3/18 10 44 

14 - 12.27 43.44 Lindy 7/22/18-7/24/18 2 3 

15 M 14.90 48.65 Lindy 7/22/18-8/20/18 7 30 

16 M 7.54 33.71 Lindy 7/22/18-7/24/18 2 3 

17 F 12.29 46.14 Lindy 7/24/18-9/6/18 7 45 

18 F 8.70 37.31 Ramsey Road 7/25/18-8/6/18 5 13 

19 M 7.70 39.46 Ramsey Road 7/31/18-8/10/18 4 11 

20 F 9.96 42.65 Ramsey Road 7/31/18 1 1 

21 F 11.04 40.46 Ramsey Road 7/31/18-9/5/18 9 37 

22 M 9.55 39.13 Lindy_24 8/7/18-9/11/18 10 36 

23 F 8.37 34.9 Lindy_24 8/7/18-9/11/18 10 36 

24 F 20.43 49.11 Lindy_24 8/7/18 1 1 

25 F 15.46 41.88 Lindy_24 8/7/18 1 1 

26 M 9.66 39.01 Lindy_24 8/13/18-9/11/18 8 30 

27 F 16.72 45.02 Lindy_24 8/13/18-9/11/18 8 30 

28 F 6.79 36.65 Ramsey Road 8/14/18 1 1 

29 M 9.07 40.00 Twin Lakes 8/14/18-8/18/18 2 5 

30 F 12.57 42.60 Lindy 8/14/18-9/6/18 5 24 

31 F 12.21 40.52 Lindy_24 8/15/18-9/11/18 7 28 

32 F 12.46 45.17 Lindy_24 8/16/18-9/11/18 7 27 

33 F 14.08 45.79 Lindy_24 8/16/18-9/11/18 8 27 
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